

ROBOTICS

Product specification

IRB 910SC

Trace back information:
Workspace 21C version a3
Checked in 2021-09-23
Skribenta version 5.4.005

Product specification

IRB 910SC-3/0.45 IRB 910SC-3/0.55 IRB 910SC-3/0.65

IRC5

Document ID: 3HAC056431-001

Revision: L

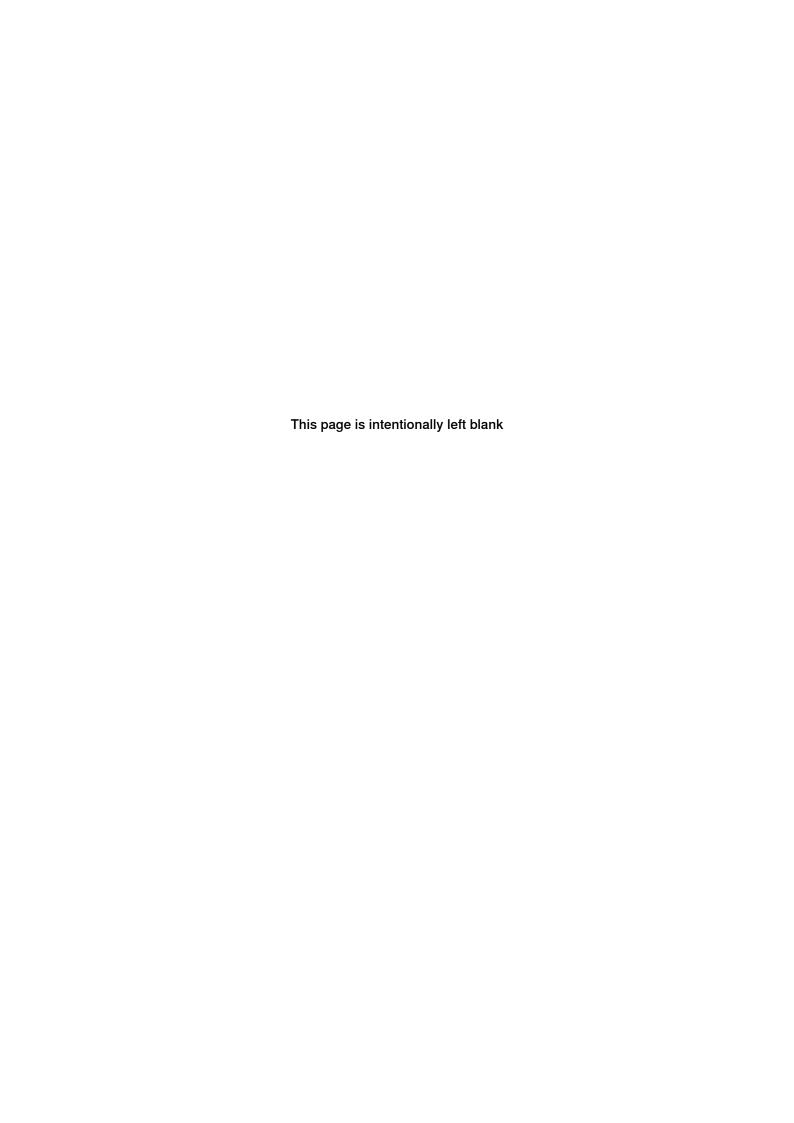
The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damage to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.


Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2016-2021 ABB. All rights reserved. Specifications subject to change without notice.

Table of contents

	Over	view of this specification	,
1	Desc	ription	9
	1.1	Structure	g
	• • •	1.1.1 Introduction to structure	g
		1.1.2 The robot	11
	1.2	Standards	14
		1.2.1 Applicable standards	14
	1.3	Installation	16
	1.0	1.3.1 Introduction to installation	16
		1.3.2 Operating requirements	17
		1.3.3 Mounting the manipulator	18
	1.4	Load diagrams	20
	1.4	1.4.1 Introduction to load diagram	20
		1.4.2 Load diagram	21
		1.4.3 Maximum load and moment of inertia	24
		1.4.4 Extra loads	26
	1.5	Mounting of equipment	27
	1.6	Calibration	29
	1.0	1.6.1 Calibration methods	29
		1.6.2 Fine calibration	31
		1.6.3 Absolute Accuracy option	32
	1.7	Maintenance and troubleshooting	34
	1.7	1.7.1 Introduction to maintenance and trouble shooting	34
	1.8	Robot motion	35
	1.0	1.8.1 Working range and type of motion	36
		1.8.2 Performance according to ISO 9283	40
		1.8.3 Velocity	41
		1.8.4 Pressing force (Z-stroke)	42
		1.8.5 Robot stopping distances and times	43
	1.9	Customer connections	44
	1.9	Customer connections	44
2	Spec	ification of variants and options	47
	2.1	Introduction to variants and options	47
	2.2	Manipulator	48
	2.3	Floor cables	50
	2.4	User documentation	51
3	Acce	essories	53
ınc	dex		55

Overview of this specification

About this product specification

It describes the performance of the manipulator or a complete family of manipulators in terms of:

- · The structure and dimensional prints
- The fulfilment of standards, safety and operating requirements
- The load diagrams, mounting of extra equipment, the motion and the robot reach
- · The specification of variants and options available

Usage

Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual.

Users

It is intended for:

- · Product managers and product personnel
- · Sales and marketing personnel
- · Order and customer service personnel

References

Documentation referred to in the manual, is listed in the table below.

Document name	Document ID
Product manual - IRB 910SC	3HAC056430-001
Product manual, spare parts - IRB 910SC	3HAC056433-001
Reference to the circuit diagram for the robot.	Document ID
Product manual - IRC5 Compact	3HAC035738-001
Operating manual - IRC5 with FlexPendant	3HAC050941-001
Product specification - Controller software IRC5	3HAC050945-001
Product specification - Controller IRC5	3HAC047400-001
Product specification - Robot user documentation, IRC5 with Robot-Ware 6	3HAC052355-001

Revisions

Revision	Description
-	First edition.

Continued

Revision	Description
А	The force and torque values under endurance load and maximum load have been updated. See <i>Floor mounted on page 18</i> .
	 Ball screw spline unit is added to the warning listing the parts that are easily damaged due to overload. See <i>Information on page 20</i>.
	 Working range of axis 4 has been updated. See Robot motion on page 36.
	 Performance data of IRB 910SC-3/0.45 and IRB 910SC-3/0.65 has been added. See Performance according to ISO 9283 on page 40.
	 Velocity of axis 3 changes from 1.02 m/s to 1 m/s. See Velocity on page 41.
	Minor changes.
В	Published in release R16.2. The following updates are done in this revision:
	Dimension drawing for fitting the end effector is updated. See Fitting of end effector to the ball screw spline shaft on page 27.
С	Published in release R17.1. The following updates are done in this revision:
	Restriction of load diagram added.
	Changed protection from IP30 to IP20
D	Published in release R17.2. The following updates are done in this revision:
	Updated list of applicable standards.
	Improved picture of end effector dimension.
E	Published in release R18.2. The following updates are done in this revision:
	Updated the COG figure for describing max. moment of inertia.
F	Published in release R19D The following updates are done in this revision:
	 Updated information about Absolute Accuracy. The graphic of working range changed.
G	Published in release R20C The following updates are done in this revision:
	Add section Extra loads.
Н	Published in release R20D The following updates are done in this revision:
	Warranty section updated.
J	Published in release R21A The following updates are done in this revision:
	Pressing force (Z-stroke) section added.
К	Published in release 21B. The following updates are done in this revision: Modified the air hose diameter description.
	Text regarding fastener quality is updated.
	Removed Axis resolution.
L	Published in release 21C. The following updates are done in this revision: Absolute Accuracy production data added.

1.1.1 Introduction to structure

1 Description

1.1 Structure

1.1.1 Introduction to structure

General

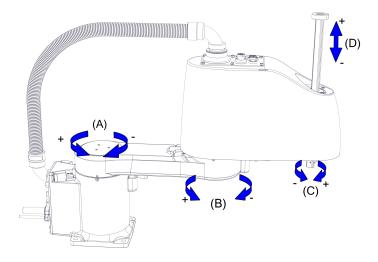
The IRB 910SC is ABB Robotics first generation SCARA robot, with 4 axes and a rated payload of 3 kg (maximum payload of 6 kg) in three different reach variants 0.45 m, 0.55 m, and 0.65 m, designed specifically for manufacturing industries that use flexible robot-based automation, e.g. 3C industry. The robot has an open structure that is especially adapted for flexible use, and can communicate extensively with external systems.

Operating system

The robot is equipped with the IRC5 Compact (IRC5C) controller and robot control software, RobotWare. RobotWare supports every aspect of the robot system, such as motion control, development and execution of application programs, communication etc. See *Product specification - Controller IRC5 with FlexPendant* (IRC5C included).

Safety

The safety standards are valid for the complete robot, manipulator and controller.


Additional functionality

For additional functionality, the robot can be equipped with optional software for application support - for example dispensing and cutting, communication features - network communication - and advanced functions such as multitasking, sensor control etc. For a complete description on optional software, see *Product specification - Controller software IRC5*.

1.1.1 Introduction to structure

Continued

Manipulator axes

Posi- tion	Description	Posi- tion	Description
Α	Axis 1	В	Axis 2
С	Axis 4	D	Axis 3

1.1.2 The robot

1.1.2 The robot

General

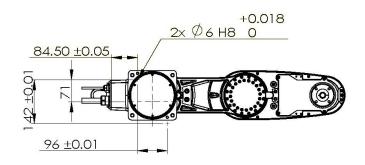
The IRB 910SC is available in three versions and all can only be mounted on floor or other flat surface, no other mounting position is permitted.

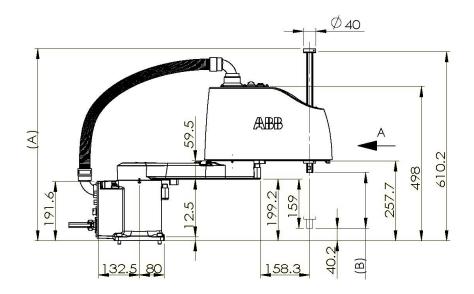
Robot type	Rated handling capacity (kg)	Maximum handling capacity (kg)	Reach (m)
IRB 910SC	3 kg	6 kg	0.45 m
IRB 910SC	3 kg	6 kg	0.55 m
IRB 910SC	3 kg	6 kg	0.65 m

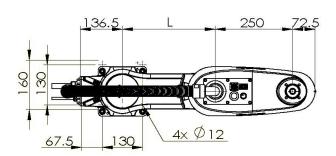
Manipulator weight

Data	Weight
IRB 910SC-3/0.45	24.5 kg
IRB 910SC-3/0.55	25 kg
IRB 910SC-3/0.65	25.5 kg

Other technical data


Data	Description	Note
Airborne noise level	•	< 70 dB (A) Leq (acc. to the working space Machinery directive 2006/42/EG)


Power consumption


Robot in 0 degree position		IRB 910SC- 3/0.55	IRB 910SC- 3/0.65
Brakes engaged	71 W	71 W	71 W
Brakes disengaged	127.6 W	127.6 W	127.6 W

1.1.2 The robot *Continued*

Dimensions

xx1500002526

Item	Description	Variant		
		IRB 910SC- 3/0.45	IRB 910SC- 3/0.55	IRB 910SC- 3/0.65
L	Length of lower arm	200 mm	300 mm	400 mm
Α	Maximum height	620 mm	620 mm	620 mm

1.1.2 The robot Continued

Item	Description	Variant		
		IRB 910SC- 3/0.45	IRB 910SC- 3/0.55	IRB 910SC- 3/0.65
В	Z stroke	180 mm	180 mm	180 mm

1.2.1 Applicable standards

1.2 Standards

1.2.1 Applicable standards

Note

The listed standards are valid at the time of the release of this document. Phased out or replaced standards are removed from the list when needed.

General

The product is designed in accordance with ISO 10218-1:2011, Robots for industrial environments - Safety requirements -Part 1 Robots, and applicable parts in the normative references, as referred to from ISO 10218-1:2011. In case of deviations from ISO 10218-1:2011, these are listed in the declaration of incorporation which is part of the product delivery.

Normative standards as referred to from ISO 10218-1

Standard	Description
ISO 9283:1998	Manipulating industrial robots - Performance criteria and related test methods
ISO 10218-2	Robots and robotic devices - Safety requirements for industrial robots - Part 2: Robot systems and integration
ISO 12100	Safety of machinery - General principles for design - Risk assessment and risk reduction
ISO 13849-1:2006	Safety of machinery - Safety related parts of control systems - Part 1: General principles for design
ISO 13850	Safety of machinery - Emergency stop - Principles for design
IEC 60204-1:2005	Safety of machinery - Electrical equipment of machines - Part 1: General requirements
IEC 62061:2005	Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems

Deviation for delay circuit

Some variants of IRB 910SC has an inherent delay circuit to enhance the lifetime of speed reducers. This only applies to variants IRB 910SC-3/0.45, IRB 910SC-3/0.55, and IRB 910SC-3/0.65.

This circuit allows an extended time period for soft stop by enabling a delay of about 0.5 s before motor brakes are engaged, e.g. when the three-position enabling device is released or compressed, or the emergency stop is pressed. During this period, the robot axes 1 and 2 will continue their movement until they are stopped by the motor or eventually by brakes. Make sure the robot safeguarded area is free from obstacles, even during manual operations. Note that this delay does not apply to axes 3 and 4.

For more details regarding stopping time and distance metric, see *Product specification - Robot stopping distances according to ISO 10218-1*.

1.2.1 Applicable standards Continued

Region specific standards and regulations

Standard	Description
ANSI/RIA R15.06	Safety requirements for industrial robots and robot systems
ANSI/UL 1740	Safety standard for robots and robotic equipment
CAN/CSA Z 434-14	Industrial robots and robot Systems - General safety requirements

Other standards used in design

Standard	Description
ISO 9787:2013	Robots and robotic devices Coordinate systems and motion nomenclatures
IEC 61000-6-2	Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity standard for industrial environments
IEC 61000-6-4 (option 129-1)	Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments
ISO 13732-1:2006	Ergonomics of the thermal environment - Part 1
IEC 60974-1:2012 ⁱ	Arc welding equipment - Part 1: Welding power sources
IEC 60974-10:2014 ⁱ	Arc welding equipment - Part 10: EMC requirements
ISO 14644-1:2015 ⁱⁱ	Classification of air cleanliness
IEC 60529:1989 + A2:2013	Degrees of protection provided by enclosures (IP code)

i Only valid for arc welding robots. Replaces IEC 61000-6-4 for arc welding robots.

ii Only robots with protection Clean Room.

1 Description

1.3.1 Introduction to installation

1.3 Installation

1.3.1 Introduction to installation

General

IRB 910SC is adapted for normal industrial environment. An end effector with max. weight of 6 kg, including payload, can be mounted on the lower end of the ball screw spline shaft (axis 3). For more information about mounting of extra equipment, see *Mounting of equipment on page 27*.

1.3.2 Operating requirements

1.3.2 Operating requirements

Protection standard

Robot variant	Protection standard IEC529
All variants, manipulator	IP20

Explosive environments

The robot must not be located or operated in an explosive environment.

Working range limitations

EPS will not be selectable and no mechanical limitations available.

Ambient temperature

Description	Standard/Option	Temperature
Manipulator during operation	Standard	+ 5°C ⁱ (41°F) to + 45°C (113°F)
For the controller	Standard/Option	See Product specification - Controller IRC5
Complete robot during transportation and storage	Standard	- 25°C (-13°F) to + 55°C (131°F)
For short periods (not exceeding 24 hours)	Standard	up to + 70°C (158°F)

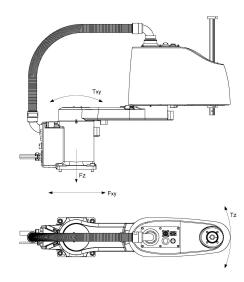
At low environmental temperature < 10°C is, as with any other machine, a warm-up phase recommended to be run with the robot. Otherwise there is a risk that the robot stops or run with lower performance due to temperature dependent oil and grease viscosity.

Relative humidity

Description	Relative humidity
Complete robot during operation, transportation and storage	Max. 95% at constant temperature

1.3.3 Mounting the manipulator

1.3.3 Mounting the manipulator


General

Maximum load in relation to the base coordination system. See Figure below.

Floor mounted

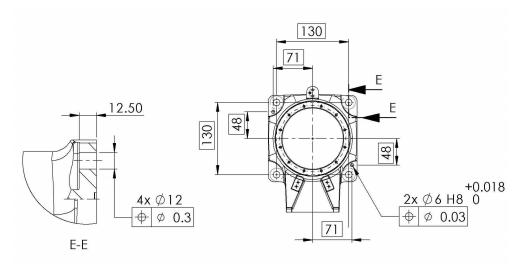
Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	±651 N	±945 N
Force z	255±392 N	255±441 N
Torque xy	±260 Nm	±418 Nm
Torque z	±121 Nm	±238 Nm

The illustration shows the directions of the robots stress forces.

xx1500002522

F _{xy}	Force in any direction in the XY plane
Fz	Force in the Z plane
T _{xy}	Bending torque in any direction in the XY plane
Tz	Bending torque in the Z plane

The table shows the various forces and torques working on the robot during different kinds of operation.


Note

These forces and torques are extreme values that are rarely encountered during operation. The values also never reach their maximum at the same time!

1.3.3 Mounting the manipulator Continued

Fastening holes robot base

View from top.

xx1500002521

Attachment bolts, specification

The table specifies the type of securing screws and washers to be used to secure the robot directly to the foundation. It also specifies the type of pins to be used.

Suitable screws	M10x25
Quantity	4 pcs
Quality	8.8
Suitable washer	20x10.5x2
Guide pins	2 pcs, D6x20, ISO 2338 - 6m6x20 - A1
Tightening torque	45 Nm
Level surface requirements	0.1
	xx1500000627

1.4.1 Introduction to load diagram

1.4 Load diagrams

1.4.1 Introduction to load diagram

Information

WARNING

It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot.

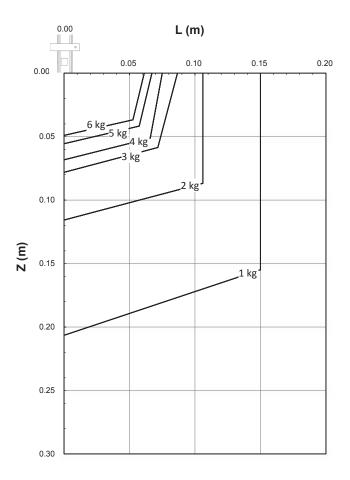
If incorrect load data is used, and/or if loads outside the load diagram are used, the following parts can be damaged due to overload:

- · motors
- gearboxes
- · mechanical structure
- · ball screw spline unit

WARNING

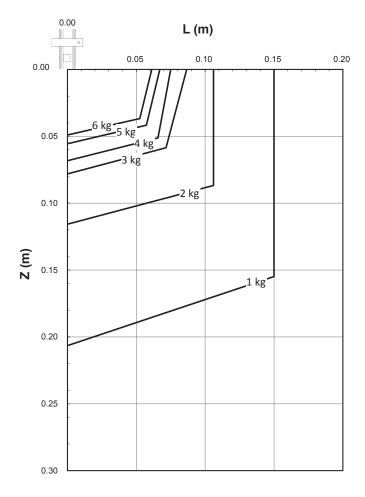
In RobotWare, the service routine LoadIdentify can be used to determine correct load parameters. The routine automatically defines the tool and the load. See *Operating manual - IRC5 with FlexPendant*, for detailed information.

WARNING

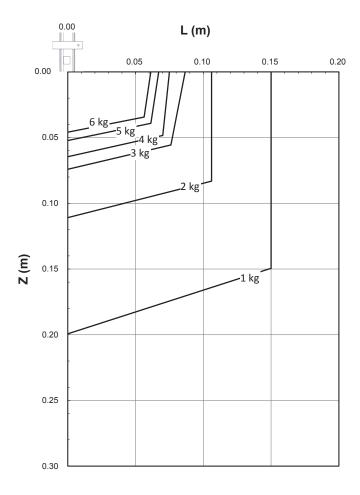

Robots running with incorrect load data and/or with loads outside the load diagram, will not be covered by robot warranty.

General

The load diagram includes a nominal pay load inertia, J_0 of 0.01 kgm². At different moment of inertia the load diagram will be changed. For robots that are allowed tilted, wall or inverted mounted, the load diagrams as given are valid.


1.4.2 Load diagram

IRB 910SC-3/0.45


1.4.2 Load diagram *Continued*

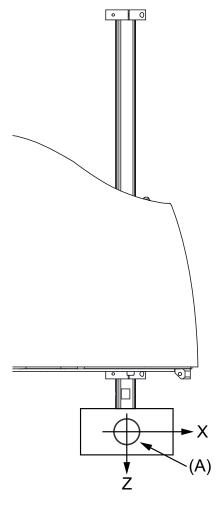
IRB 910SC-3/0.55

1.4.2 Load diagram Continued

IRB 910SC-3/0.65

1.4.3 Maximum load and moment of inertia

1.4.3 Maximum load and moment of inertia


General

Total load given as: Mass in kg, center of gravity (Z and L) in m and moment of inertia (J_{ox} , J_{oy} , J_{ox}) in kgm². L= $\sqrt{(X^2 + Y^2)}$.

For IRB 910SC, L is 0 mm at the default rating and its maximum value changes with the payload. See *Load diagram on page 21*.

Full movement

Axis	Robot variant	Max. value
4	IRB 910SC-3/0.45	J_4 = Mass x L ² + $J_{0Z} \le 0.1 \text{ kgm}^2$
	IRB 910SC-3/0.55	J_4 = Mass x L ² + $J_{0Z} \le 0.1 \text{ kgm}^2$
	IRB 910SC-3/0.65	J_4 = Mass x L ² + $J_{0Z} \le 0.1 \text{ kgm}^2$

xx1500002615

Position	Description
Α	Center of gravity

1.4.3 Maximum load and moment of inertia Continued

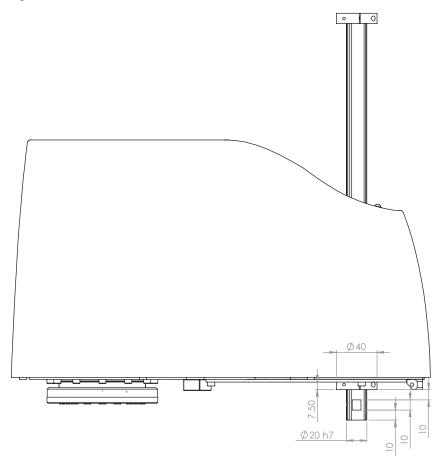
Position	Description
J_{ox}, J_{oy}, J_{oz}	Max. moment of inertia around the X, Y and Z axes at center of gravity.

1.4.4 Extra loads

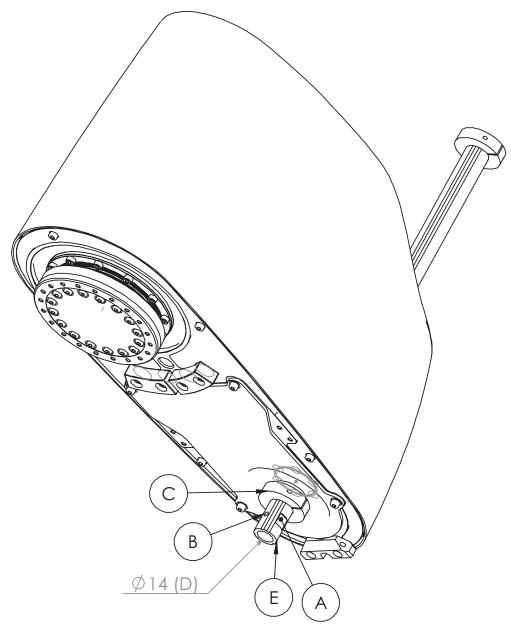
1.4.4 Extra loads

Load areas

Extra loads are not recommended. If extra load are indeed needed by application. Extra loads can be mounted on arm-1 and arm-2. The maximum extra load needs to meet the following requirement:


Extra loads + payload <= payload specification.

For more information about extra loads specification and mounting method, please contact ABB.


1.5 Mounting of equipment

Fitting of end effector to the ball screw spline shaft

An end effector can be attached to the lower end of the shaft of the ball screw spline unit. The dimensions for fitting the end effector is shown in the following figure.

1.5 Mounting of equipment *Continued*

xx1500002523

Α	Flat cut
В	Conical hole
С	Stop block diameter
D	Through hole
E	Shaft diameter

Fastener quality

When fitting tools on the tool flange, only use screws with quality 12.9. For other equipment use suitable screws and tightening torque for your application.

1.6 Calibration

1.6.1 Calibration methods

Overview

This section specifies the different types of calibration and the calibration methods that are supplied by ABB.

More information is available in the product manual.

Types of calibration

Type of calibration	Description	Calibration method		
Standard calibration	The calibrated robot is positioned at calibration position.	Manual calibration		
	Standard calibration data is found on the SMB (serial measurement board) or EIB in the robot.			
	For robots with RobotWare 5.04 or older, the calibration data is delivered in a file, calib.cfg, supplied with the robot at delivery. The file identifies the correct resolver/motor position corresponding to the robot home position.			
Absolute accuracy calibration (optional)	Based on standard calibration, and besides positioning the robot at synchronization position, the Absolute accuracy calibration also compensates for: • Mechanical tolerances in the robot structure	CalibWare		
	 Deflection due to load 			
	Absolute accuracy calibration focuses on pos- itioning accuracy in the Cartesian coordinate system for the robot.			
	Absolute accuracy calibration data is found on the SMB (serial measurement board) in the robot.			
	For robots with RobotWare 5.05 or older, the absolute accuracy calibration data is delivered in a file, absacc.cfg, supplied with the robot at delivery. The file replaces the calib.cfg file and identifies motor positions as well as absolute accuracy compensation parameters.			
	A robot calibrated with Absolute accuracy has a sticker next to the identification plate of the robot.			
	To regain 100% Absolute accuracy performance, the robot must be recalibrated for absolute accuracy after repair or maintenance that affects the mechanical structure.			
	ABSOLUTE ACCURACY 3HAC 14257-1			

1 Description

1.6.1 Calibration methods

Continued

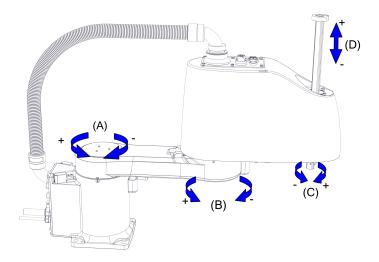
Brief description of calibration methods

Manual calibration method

With the manual calibration method, the robot's axes are positioned in specific calibration positions using calibration tools. Under this condition, the position of the axis to be calibrated is pre-determined. The axes must be calibrated one at a time.

CalibWare - Absolute Accuracy calibration

The CalibWare tool guides through the calibration process and calculates new compensation parameters. This is further detailed in the *Application manual - CalibWare Field*.


If a service operation is done to a robot with the option Absolute Accuracy, a new absolute accuracy calibration is required in order to establish full performance. For most cases after replacements that do not include taking apart the robot structure, standard calibration is sufficient.

1.6.2 Fine calibration

1.6.2 Fine calibration

General

Fine calibration is made by moving the axes so that the synchronization mark on each joint is aligned. For detailed information on calibration of the robot see *Product manual - IRB 910SC*.

Posi- tion	Description	Posi- tion	Description
Α	Axis 1	В	Axis 2
С	Axis 4	D	Axis 3

1.6.3 Absolute Accuracy option

1.6.3 Absolute Accuracy option

Purpose

Absolute Accuracy is a calibration concept that improves TCP accuracy. The difference between an ideal robot and a real robot can be several millimeters, resulting from mechanical tolerances and deflection in the robot structure. Absolute Accuracy compensates for these differences.

Here are some examples of when this accuracy is important:

- · Exchangeability of robots
- Offline programming with no or minimum touch-up
- · Online programming with accurate movement and reorientation of tool
- Programming with accurate offset movement in relation to eg. vision system or offset programming
- · Re-use of programs between applications

The option *Absolute Accuracy* is integrated in the controller algorithms and does not need external equipment or calculation.

Note

The performance data is applicable to the corresponding RobotWare version of the individual robot.

What is included

Every Absolute Accuracy robot is delivered with:

- · compensation parameters saved on the robot's serial measurement board
- a birth certificate representing the Absolute Accuracy measurement protocol for the calibration and verification sequence.

A robot with *Absolute Accuracy* calibration has a label with this information on the manipulator.

Absolute Accuracy supports floor mounted, wall mounted and ceiling mounted installations. Compensation parameters saved in the robot's serial measurement board differ depending on which Absolute Accuracy option is selected.

When is Absolute Accuracy being used

Absolute Accuracy works on a robot target in Cartesian coordinates, not on the individual joints. Therefore, joint based movements (e.g. MoveAbsJ) will not be affected.

If the robot is inverted, the Absolute Accuracy calibration must be performed when the robot is inverted.

Absolute Accuracy active

Absolute Accuracy will be active in the following cases:

- Any motion function based on robtargets (e.g. MoveL) and ModPos on robtargets
- Reorientation jogging

1.6.3 Absolute Accuracy option Continued

- · Linear jogging
- Tool definition (4, 5, 6 point tool definition, room fixed TCP, stationary tool)
- Work object definition

Absolute Accuracy not active

The following are examples of when Absolute Accuracy is not active:

- Any motion function based on a jointtarget (MoveAbsJ)
- · Independent joint
- · Joint based jogging
- Additional axes
- Track motion

Note

In a robot system with, for example, an additional axis or track motion, the Absolute Accuracy is active for the manipulator but not for the additional axis or track motion.

RAPID instructions

There are no RAPID instructions included in this option.

Production data

Typical production data regarding calibration are:

Robot	Positioning ac	Positioning accuracy (mm)		
	Average	Max	% Within 1 mm	
IRB910SC-3/0.45	0.15	0.3	100	
IRB910SC-3/0.55	0.15	0.3	100	
IRB910SC-3/0.65	0.15	0.3	100	

1.7.1 Introduction to maintenance and trouble shooting

1.7 Maintenance and troubleshooting

1.7.1 Introduction to maintenance and trouble shooting

General

The robot requires only a minimum of maintenance during operation. It has been designed to make it as easy to service as possible:

- · Maintenance-free AC motors are used.
- · Grease used for all gearboxes.
- The cabling is routed for longevity, and in the unlikely event of a failure, its modular design makes it easy to change.

Maintenance

The maintenance intervals depend on the use of the robot, the required maintenance activities also depends on selected options. For detailed information on maintenance procedures, see *Maintenance* section in the *Product Manual - IRB 910SC*.

1.8 Robot motion

1.8 Robot motion

General

Note

Robot moves faster when axis 3 is at a higher position. If the axis 3 is at a relatively low position, the acceleration and deceleration of axes 1, 2 and 4 may be reduced based on the actual position and speed of the axes, and the stabilization time for final positioning may also be longer when moving the robot horizontally.

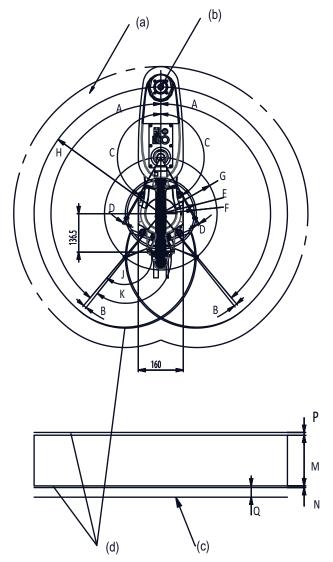
1.8.1 Working range and type of motion

1.8.1 Working range and type of motion

Robot motion

Axis	Type of motion	Working range
Axis 1	Rotation motion	-140° to +140°
Axis 2	Rotation motion	-150° to +150° ⁱ
Axis 3	Linear motion	-180 mm to 0 mm
Axis 4	Rotation motion	Default: -400° to +400° ii

The axis 2 can be restricted to a smaller working range by fitting one more axis-2 mechanical stop block to the upper arm. For how to fit the block, see *Product manual - IRB 910SC*.

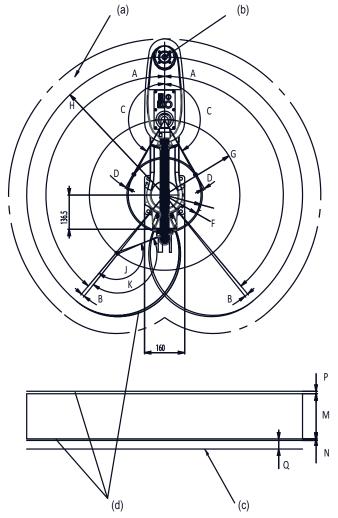

The additional mechanical stop block and related screws are provided in accessory package.

The default working range for axis 4 can be extended by changing parameter values in the software.

Working range

Illustration, working range and turning radius IRB 910SC-3/0.45

This illustration shows the unrestricted working range and turning radius of IRB 910SC-3/0.45.

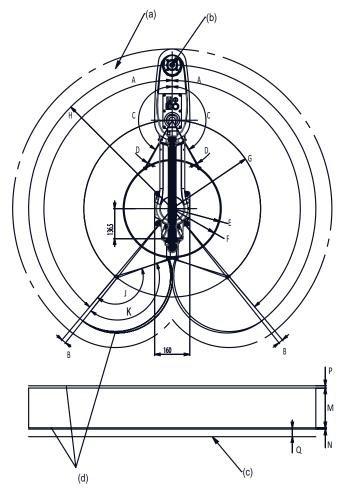

xx1500002474

а	Maximum space	F	119 mm
b	Center joint of axis 3	G	200 mm
С	Base mounting face	Н	450 mm
d	Area limited by mechanical stop	J	150°
Α	140°	K	151.2°
В	1.5°	М	180 mm
С	150°	N	5 mm
D	1.2°	Р	2 mm
E	126 mm	Q	40.2 mm

1.8.1 Working range and type of motion *Continued*

Illustration, working range and turning radius IRB 910SC-3/0.55

This illustration shows the unrestricted working range and turning radius of IRB 910SC-3/0.55.


xx1500002475

а	Maximum space	F	145 mm
b	Center joint of axis 3	G	300 mm
С	Base mounting face	Н	550 mm
d	Area limited by mechanical stop	J	150°
Α	140°	K	151.2°
В	1.5°	М	180 mm
С	150°	N	5 mm
D	1.2°	Р	2 mm
Е	150 mm	Q	40.2 mm

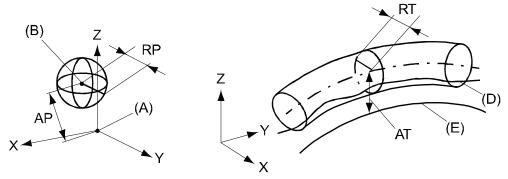
1.8.1 Working range and type of motion Continued

Illustration, working range and turning radius IRB 910SC-3/0.65

This illustration shows the unrestricted working range and turning radius of IRB 910SC-3/0.65.

xx1500002476

а	Maximum space	F	217 mm
b	Center joint of axis 3	G	400 mm
С	Base mounting face	Н	650 mm
d	Area limited by mechanical stop	J	150°
Α	140°	K	151.2°
В	1.5°	М	180 mm
С	150°	N	5 mm
D	1.2°	Р	2 mm
E	222 mm	Q	40.2 mm


1.8.2 Performance according to ISO 9283

1.8.2 Performance according to ISO 9283

General

At rated maximum load, maximum offset and 1.6 m/s velocity on the inclined ISO test plane, with all six axes in motion. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result.

The figures for AP, RP, AT and RT are measured according to figure below.

xx0800000424

Pos	Description	Pos	Description
Α	Programmed position	E	Programmed path
В	Mean position at program execution	D	Actual path at program execution
AP	Mean distance from programmed position	AT	Max deviation from E to average path
RP	Tolerance of position B at repeated positioning	RT	Tolerance of the path at repeated program execution

Description	Values ⁱ		
	IRB 910SC-3/0.45	IRB 910SC-3/0.55	IRB 910SC-3/0.65
Pose repeatability, RP (mm)	0.01	0.01	0.01
Pose accuracy, AP (mm) ii	0.01	0.01	0.01
Linear path repeatability, RT (mm)	0.09	0.06	0.06
Linear path accuracy, AT (mm)	0.91	0.70	0.65
Pose stabilization time, PSt (s) within 0.1 mm of the position	0.08	0.19	1.01

The values are based on the zero position of axis 3.

AP according to the ISO test above, is the difference between the teached position (position manually modified in the cell) and the average position obtained during program execution.

1.8.3 Velocity

1.8.3 Velocity

General

Robot variant	Axis 1	Axis 2	Axis 3	Axis 4
IRB 910SC-3/0.45	415 °/s	659 °/s	1 m/s	2,400 °/s
IRB 910SC-3/0.55	415 °/s	659 °/s	1 m/s	2,400 °/s
IRB 910SC-3/0.65	415 °/s	659 °/s	1 m/s	2,400 °/s

The velocities of axes 1, 2, and 4 are measured with rated payload and axis 3 at position of 0 mm.

Supervision is required to prevent overheating in applications with intensive and frequent movements.

1 Description

1.8.4 Pressing force (Z-stroke)

1.8.4 Pressing force (Z-stroke)

General

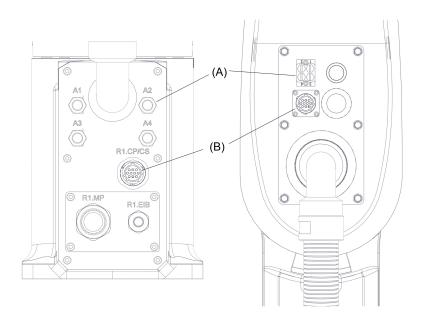
Robot Version	IRB 910SC-3/0.45	IRB 910SC-3/0.55	IRB 910SC-3/0.65
Axis 3 (Z stroke) down force	250 N	250 N	250 N

1.8.5 Robot stopping distances and times

1.8.5 Robot stopping distances and times

Introduction

The stopping distances and times for category 0 and category 1 stops, as required by EN ISO 10218-1 Annex B, are listed in *Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645-001)*.


1.9 Customer connections

1.9 Customer connections

Introduction to customer connections

The cables for customer connection are integrated in the robot and the connectors are placed at the upper arm and base. There is one connector R3.CP/CS at the upper arm. Corresponding connector R1.CP/CS is located at the base.

Hose for compressed air is also integrated into the manipulator. There are 4 inlets at the base (R1/8") and 4 outlets (M5) on the upper arm.

xx1500002751

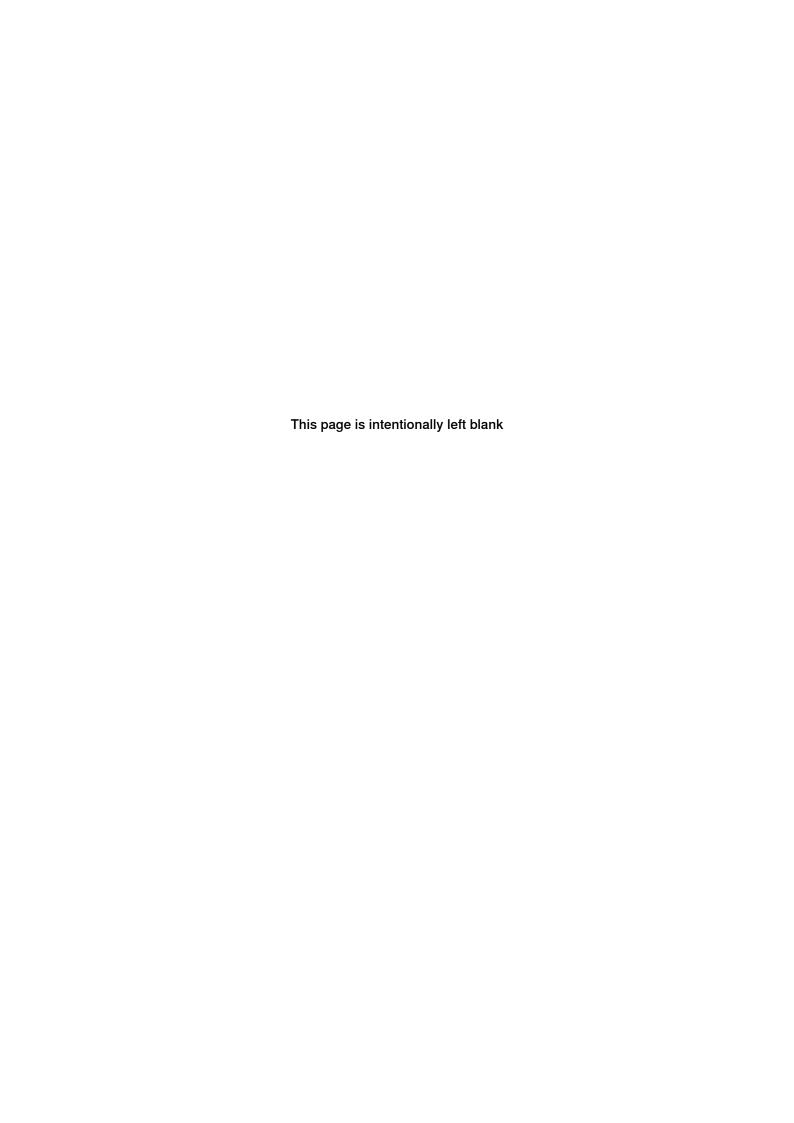
Position	Connection	Description	Number	Value
Α	Air	Max. 5 bar	4	Outer diameter of air hose: 4 mm
В	(R1)R3.CP/CS	Customer power/signal	10	49 V, 500 mA

Connectors

The tables describes the connectors on base and upper arm.

Connectors, base

Position	Description	Art. no.
Robot	Pin connector 10p, bulkhead	3HAC022117-002
Customer connector	Connector set R1.CP/CS	3HAC037038-001


Connectors, upper arm

Position	Description	Art. no.
Robot	Socket connector 10p, flange mounted	3HAC023624-002
Customer connector	Connector set R3.CP/CS	3HAC037070-001

1.9 Customer connections Continued

Air, connector

Position	Description	Art. no.
Robot	4xM5	
Customer cable	Air connector	3HAC032049-001

2.1 Introduction to variants and options

2 Specification of variants and options

2.1 Introduction to variants and options

General

The different variants and options for the IRB 910SC are described in the following sections. The same option numbers are used here as in the specification form.

The variants and options related to the robot controller are described in the product specification for the controller.

2.2 Manipulator

2.2 Manipulator

Variants

Option	IRB Type	Rated handling capacity (kg)	Reach (m)
435-135	IRB 910SC	3	0.45
435-136	IRB 910SC	3	0.55
435-137	IRB 910SC	3	0.65

Protection

Option	Description
287-4	Standard

Connection kit

Option	Description	
431-1	For the connectors on the upper arm, customer connection.	
239-1	For the connectors on the foot.	

Warranty

For the selected period of time, ABB will provide spare parts and labour to repair or replace the non-conforming portion of the equipment without additional charges. During that period, it is required to have a yearly Preventative Maintenance according to ABB manuals to be performed by ABB. If due to customer restrains no data can be analyzed in the ABB Ability service *Condition Monitoring & Diagnostics* for robots with OmniCore controllers, and ABB has to travel to site, travel expenses are not covered. The Extended Warranty period always starts on the day of warranty expiration. Warranty Conditions apply as defined in the Terms & Conditions.

Note

This description above is not applicable for option Stock warranty [438-8]

Option	Туре	Description
438-1	Standard warranty	Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply.
438-2	Standard warranty + 12 months	Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-4	Standard warranty + 18 months	Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.

2.2 Manipulator Continued

Option	Туре	Description
438-5	Standard warranty + 24 months	Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-6	Standard warranty + 6 months	Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply.
438-7	Standard warranty + 30 months	Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply.
438-8	Stock warranty	Maximum 6 months postponed start of standard warranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred before the end of stock warranty. Standard warranty commences automatically after 6 months from <i>Factory Shipment Date</i> or from activation date of standard warranty in WebConfig.
		Note Special conditions are applicable, see Robotics Warranty Directives.

2.3 Floor cables

2.3 Floor cables

Manipulator cable length

Option	Lengths
210-1	3 m
210-2	7 m
210-3	15 m

Application interface connection to

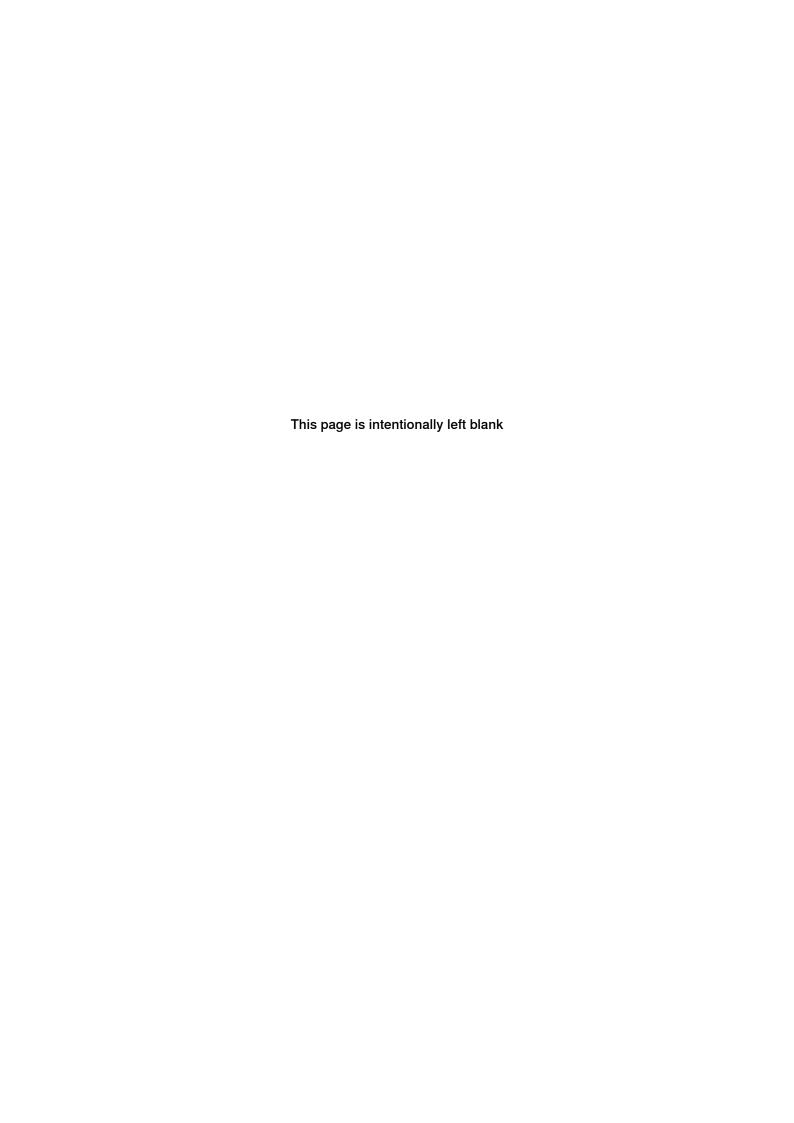
Option	Description
16-1	Cabinet

Connection of parallel communication

Option	Lengths
94-6	3 m
94-1	7 m REQUIRES: 16-1 Cabinet.
94-2	15 m REQUIRES: 16-1 Cabinet.

2.4 User documentation

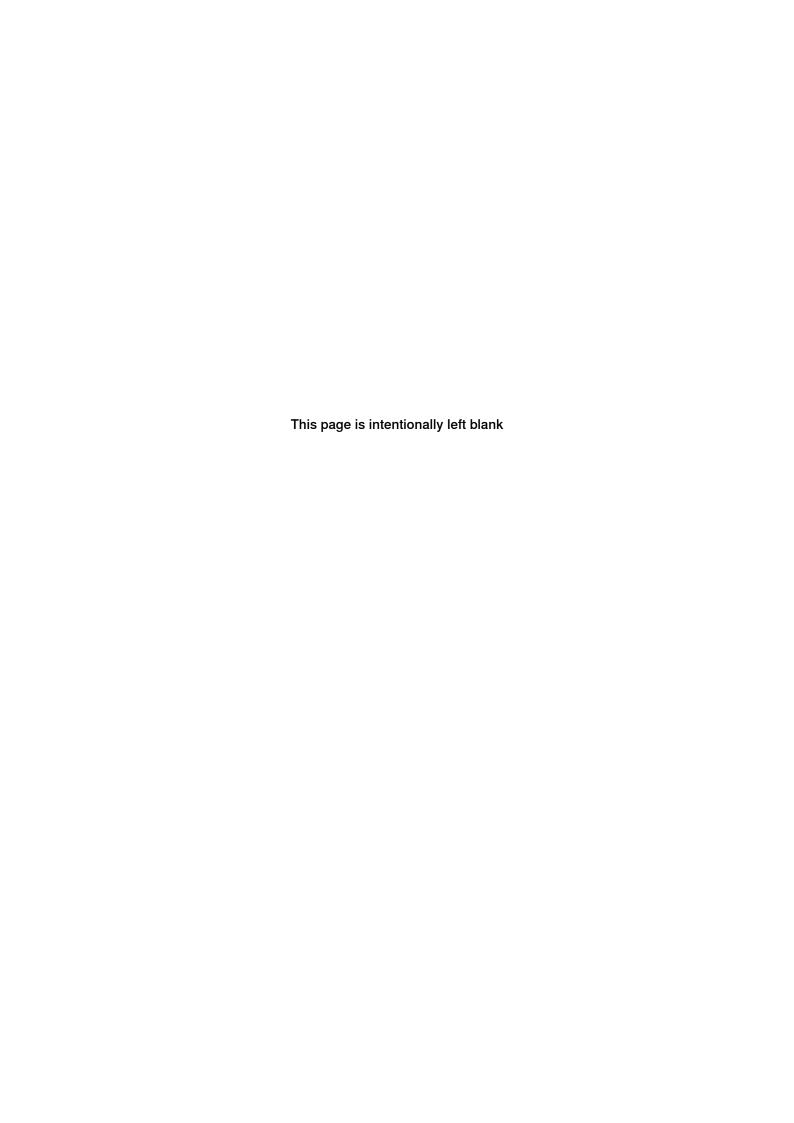
2.4 User documentation


User documentation

The user documentation describes the robot in detail, including service and safety instructions.

Tip

All documents can be found via myABB Business Portal, www.abb.com/myABB.


3 Accessories

General

There is a range of tools and equipment available.

Basic software and software options for robot and PC

For more information, see *Product specification - Controller IRC5* and *Product specification - Controller software IRC5*.

Index options, 47 Absolute Accuracy, 32 product standards, 14 Absolute Accuracy, calibration, 30 С safety standards, 14 calibration service instructions, 51 Absolute Accuracy type, 29 standard type, 29 calibration, Absolute Accuracy, 30 standards, 14 ANSI, 15 CAN, 15 EN IEC, 14 CalibWare, 29 category 0 stop, 43 category 1 stop, 43 EN ISO, 14 standard warranty, 48 compensation parameters, 32 stock warranty, 48 stopping distances, 43 stopping times, 43 documentation, 51 user documentation, 51 instructions, 51 variants, 47 manuals, 51 W warranty, 48